Skip to content
Công lý & Pháp Luật
Menu
  • Công lý
  • Pháp luật
  • Điều luật
    • Luật an ninh mạng
    • Luật bảo hiểm xã hội
    • Luật bảo vệ môi trường
    • Luật dân sự
    • Luật doanh nghiệp
    • Luật đất đai
    • Luật đấu thầu
    • Luật giáo dục
    • Luật hình sự
    • Luật lao động
    • Luật quy hoạch
    • Luật sở hữu trí tuệ
  • Mẫu công văn
    • Mẫu công văn đề nghị
    • Mẫu công văn quyết định
  • Mẫu giấy tờ
    • Mẫu giấy cam kết
    • Mẫu giấy chứng nhận
    • Mẫu giấy đề nghị thanh toán
    • Mẫu giấy đi đường
    • Mấu giấy giới thiệu
    • Mẫu giấy khen
    • Mẫu giấy mời
    • Mẫu giấy mua bán
    • Mẫu giấy ủy quyền
    • Mẫu giấy vay tiền
    • Mẫu giấy xác nhận
Menu

Các Dạng Bài Tập Viết Phương Trình Tiếp Tuyến Đi Qua 1 Điểm Lớp 10

Posted on 22 Tháng Năm, 2021

[ad_1]

Bạn đang xem: Các Dạng Bài Tập Viết Phương Trình Tiếp Tuyến Đi Qua 1 Điểm Lớp 10 Tại Lingocard.vn

Cho khoảng cách từ tâm I của đường tròn (C) tới

*

 bằng R, ta tính được m; thay m vào (1) ta được phương trình tiếp tuyến.

Đang xem: Viết phương trình tiếp tuyến đi qua 1 điểm lớp 10

* Ghi chú: Ta luôn luôn tìm được hai đường tiếp tuyến. (h. 74)

III. Tiếp tuyến

*

 song song với một phương cho sẵn có hệ số góc k.

Phương trình của

*

 có dạng:

(m chưa biết)

Cho khoảng cách từ tâm I đến (D) bằng R, ta tìm được m.

* Ghi chú: Ta luôn luôn tìm được hai đường tiếp tuyến (h.75)

*

B. Bài tập vận dụng

Câu 1: Cho đường tròn $left( C
ight):{{x}^{2}}+{{y}^{2}}+2x-4y=0$

a) Tìm tâm và bán kính của $left( C
ight)$

b) Viết pt tiếp tuyến của $left( C
ight)$ tại điểm $Aleft( 1;1
ight)$

c) Viết pt tiếp tuyến của $left( C
ight)$ đi qua điểm $Bleft( 4;7
ight)$

d) Viết pt tiếp tuyến của  $left( C
ight)$ biết tiếp tuyến  song song với đường thẳng $3x+4y+1=0$

e) Viết pt tiếp tuyến của $left( C
ight)$ biết tiếp tuyến vuông góc với đường thẳng $2x+y-3=0$

Giải:

a) $left( C
ight)$ có tâm $Ileft( -1;2
ight);$ bán kính $R=sqrt{5}$

b) Gọi $Delta $ là tiếp tuyến cần tìm

$Delta $ đi qua $Aleft( 1;1
ight)$ và nhận $overrightarrow{IA}=left( 2;-1
ight)$ làm vtpt

Phương trình của $Delta $ là: $2left( x-1
ight)-1left( y-1
ight)=0Leftrightarrow 2x-y-1=0$

c) + Gọi $Delta $ là phương trình tiếp tuyến của đường tròn với vtpt $vec{n}=left( a;b
ight)$

*

Phương trình $Delta :quad aleft( x-4
ight)+bleft( y-7
ight)=0quad left( {{a}^{2}}+{{b}^{2}}
e 0
ight)$

$Leftrightarrow ax+by-4a-7b=0$

+ $left( C
ight)$ tiếp xúc với

*

 tức là:

*

+ Chọn $b=1Rightarrow left( *
ight)$ trở thành: 

Xem thêm :  Top 10+ didongxachtay lừa đảo xem nhiều nhất
*

+ Với , pttt phải tìm là: $x-2y+10=0$

Với $a=-2$, pttt phải tìm là: $2x-y-1=0$

d) $Delta //d:3x+4y+1=0Rightarrow $phương trình $Delta $ có dạng: $3x+4y+c=0$

$Delta $ tiếp xúc với 

*
*

Vậy có hai tiếp tuyến cần tìm là: ${{Delta }_{1}}:3x+4y+5sqrt{5}-5=0;{{Delta }_{2}}:3x+4y-5sqrt{5}-5=0$

e) $Delta ot d:2x+y-3=0Rightarrow $ phương trình $Delta $ có dạng: $x-2y+c=0$

$Delta $ tiếp xúc với 

*

Vậy có hai tiếp tuyến cần tìm là: ${{Delta }_{1}}:x-2y+10=0;{{Delta }_{2}}:x-2y=0$

Câu 2: Cho đường tròn $left( C
ight):{{left( x-2
ight)}^{2}}+{{left( y-1
ight)}^{2}}=20$. Lập phương trình tiếp tuyến của đường tròn $left( C
ight)$ có hệ số góc bằng 2 .

Giải:

+ Đường tròn $left( C
ight)$ có tâm $Ileft( 2;1
ight);bk ext{ }R=2sqrt{5}$

+ Gọi $Delta $ là tiếp tuyến của đường tròn

+ Đường thẳng $Delta $ có hệ số góc bằng 2 nên pt $Delta $ có dạng: $y=2x+mLeftrightarrow 2x-y+m=0$

+ Đường thẳng $Delta $ là tiếp tuyến của đường tròn 

*

Vậy có 2 tiếp tuyến cần tìm là: ${{Delta }_{1}}:2x-y+7=0;{{Delta }_{2}}:2x-y-13=0$

Câu 3: Cho đường tròn $left( C
ight):{{left( x-1
ight)}^{2}}+{{left( y+1
ight)}^{2}}=10$. Lập pt tiếp tuyến của đường tròn $left( C
ight)$ biết tiếp tuyến tạo với $d:2x+y-4=0$ một góc bằng ${{45}^{0}}$

Giải:

+ Giả sử tiếp tuyến $Delta $ có phương trình: (1)

$Delta $ là tiếp tuyến của 

*

+ $Delta$ tạo với $d$ một góc ${{45}^{0}}$

*

Với $c=14b$ thay vào (1) ta được: $-3bx+by+14b=0Leftrightarrow -3x+y+14=0$

Với $c=-6b$ thay vào (1) ta được: $-3bx+by-6b=0Leftrightarrow 3x-y+6=0$

+ Với $a=frac{b}{3}$, giải tương tự

C. Bài tập rèn luyện

Câu 1: Trong các pt sau, pt nào là pt đường tròn, chỉ rõ tâm và bán kính:

a) ${{x}^{2}}+{{y}^{2}}-2x-4y-4=0$

b) ${{x}^{2}}+{{y}^{2}}-4x+6y+12=0$

c) $-{{x}^{2}}-{{y}^{2}}-2x-y-1=0$

d) $2{{x}^{2}}+{{y}^{2}}-2x-2y-2=0$

e) ${{x}^{2}}+{{y}^{2}}-2x-2y-2=0$

Câu 2: Lập phương trình đường tròn trong các trường hợp sau:

a) Tâm $Ileft( 1;-3
ight);$ bán kính $R=1$

b) Đi qua điểm $Aleft( 3;4
ight)$ và tâm là gốc tọa độ

Xem thêm :  Đế chế xanh đầy đủ nhất

c) Đường kính $AB$ với $Aleft( 1;1
ight)$ và $Bleft( 3;5
ight)$

d) Đi qua điểm $Aleft( 3;1
ight);Bleft( 5;5
ight)$ và tâm I nằm trên trục tung.

e) Đi qua ba điểm $Aleft( 7;1
ight);Bleft( -3;-1
ight);Cleft( 3;5
ight)$

f) Tâm $Ileft( 5;6
ight)$ và tiếp xúc với đường thẳng $d:3x-4y-6=0$

g) Tâm $Ileft( 1;3
ight)$ và đi qua điểm $Aleft( 3;1
ight)$

h) Tâm $Ileft( -2;0
ight)$ và tiếp xúc với đường thẳng $d:2x+y-1=0$

i) Đi qua điểm $Mleft( 2;1
ight)$ và tiếp xúc với hai trục tọa độ

j) Đi qua hai điểm $Mleft( 1;1
ight);Nleft( 1;4
ight)$ và tiếp xúc với trục Ox

k) Đi qua điểm $Aleft( 3;1
ight);Bleft( 5;5
ight)$ và tâm I nằm trên trục hoành Ox

l) Đi qua điểm $Aleft( 0;1
ight);Bleft( 1;0
ight)$ và tâm I nằm trên $d:x+y+2=0$

m) Đi qua 3 điểm $Aleft( 1;1
ight);Bleft( 3;-2
ight);Cleft( 4;3
ight)$ (gợi ý: tam giác ABC vuông tại A)

n) Đi qua 3 điểm $Aleft( 1;frac{sqrt{3}}{3}
ight);Bleft( 1;-frac{sqrt{3}}{3}
ight);Cleft( 0;0
ight)$ (gợi ý tam giác ABC đều)

o) $left( C
ight)$ đi qua điểm $Mleft( 4;2
ight)$ và tiếp xúc với các trục tọa độ.

Xem thêm: Cách Chỉnh Sửa Ảnh Bằng Photoshop Trên Máy Tính, Kiến Thức Cơ Bản Về Chỉnh Sửa Ảnh Trong Photoshop

Câu 3: Viết phương trình tiếp tuyến của đường tròn ${{x}^{2}}+{{y}^{2}}=4$ trong mỗi trường hợp sau:

a) Tiếp tuyến song song với $d:3x-y+17=0$

b) Tiếp tuyến vuông góc với $d:x+2y-5=0$

c) Tiếp tuyến đi qua điểm $Aleft( 2;-2
ight)$

Câu 4: Cho điểm $Mleft( 2;3
ight)$. Lập pt tiếp tuyến của đường tròn $left( C
ight)$ đi qua điểm M

a) $left( C
ight):{{left( x-3
ight)}^{2}}+left( y-1
ight)=5$

Xem thêm :  Trò chơi chuyên gia làm tóc 2

b) $left( C
ight):{{x}^{2}}+{{y}^{2}}-4x+2y-11=0$

Câu 5:  Kiểm lại rằng điểm ở trên đường (C) có phương trình:

. Tìm phương trình tiếp tuyến với (C) tại M0.

Câu 6: Viết phương trình tiếp tuyến với đường tròn (C): phát xuất từ

Câu 7: Cho đường tròn (C) có phương trình: . Tìm phương trình tiếp tuyến với (C) có hệ số góc là -2; định rõ tọa độ các tiếp điểm.

Câu 8: Cho đường tròn (C), điểm A và đường thẳng d.

a. Chứng tỏ điểm A ở ngoài (C).

b. Viết phương trình tiếp tuyến của (C) kẻ từ A.

c. Viết phương trình tiếp tuyến của (C) vuông góc với d.

Xem thêm: Khóa Học Bơi Cho Người Lớn Tại Hà Nội 2019/ Trung Tâm Dạy Bơi Uy Tín

d. Viết phương trình tiếp tuyến của (C) song song với d.

Đáp số gợi ý

Câu 2:

a. ${{left( x-1
ight)}^{2}}+{{left( y+3
ight)}^{2}}=1$

b. ${{x}^{2}}+{{y}^{2}}=25$

c. ${{left( x-2
ight)}^{2}}+{{left( y-3
ight)}^{2}}=5$

d. ${{x}^{2}}+{{left( y-5
ight)}^{2}}=25$

e. ${{x}^{2}}+{{y}^{2}}-4x-22=0$

f. ${{left( x-5
ight)}^{2}}+{{left( y-6
ight)}^{2}}=9$

g. ${{left( x-1
ight)}^{2}}+{{left( y-3
ight)}^{2}}=8$

h. ${{left( x+2
ight)}^{2}}+{{y}^{2}}=5$

i. ${{left( x-1
ight)}^{2}}+{{left( y-1
ight)}^{2}}=frac{25}{4};{{left( x-5
ight)}^{2}}+{{left( y-5
ight)}^{2}}=25$

j. ${{left( x+1
ight)}^{2}}+{{left( y-frac{5}{2}
ight)}^{2}}=frac{25}{4};{{left( x-3
ight)}^{2}}+{{left( y-frac{5}{2}
ight)}^{2}}=frac{25}{4}$

k.${{left( x-10
ight)}^{2}}+{{y}^{2}}=50$

l. ${{x}^{2}}+{{y}^{2}}+2x+2y-3=0$

m.${{left( x-frac{7}{2}
ight)}^{2}}+{{left( y-frac{1}{2}
ight)}^{2}}=frac{13}{2}$

n.${{left( x-frac{2}{3}
ight)}^{2}}+{{y}^{2}}=frac{4}{9}$

o.${{left( x-2
ight)}^{2}}+{{left( y-2
ight)}^{2}}=4;{{left( x-10
ight)}^{2}}+{{left( y-10
ight)}^{2}}=100$

Xem thêm bài viết thuộc chuyên mục: Phương trình

[ad_2]

Related posts:

  1. Vector Background chào mừng ngày nhà giáo 20-11 tải miễn phí (2021) ⭐️ Wiki ADS ⭐️
  2. Thẻ Visa TPBank có rút được tiền mặt không? Có chuyển khoản được không?
  3. Top 10+ santienao lừa đảo xem nhiều nhất
  4. Top 9+ nai xừ tiếng hàn xem nhiều nhất

Trả lời Hủy

Bạn phải đăng nhập để gửi phản hồi.

Chuyên mục

  • Câu nói – Stt hay
  • Công lý
  • Công thức
  • Game
  • Góc truyện tranh
  • Hỏi đáp
  • Hướng dẫn
  • Luật an ninh mạng
  • Luật bảo hiểm xã hội
  • Luật bảo vệ môi trường
  • Luật dân sự
  • Luật doanh nghiệp
  • Luật giáo dục
  • Luật hình sự
  • Luật lao động
  • Luật quy hoạch
  • Luật sở hữu trí tuệ
  • Luật đất đai
  • Luật đấu thầu
  • Mẫu công văn
  • Mẫu công văn đề nghị
  • Mẫu giấy cam kết
  • Mẫu giấy chứng nhận
  • Mấu giấy giới thiệu
  • Mẫu giấy khen
  • Mẫu giấy mời
  • Mẫu giấy mua bán
  • Mẫu giấy tờ
  • Mẫu giấy ủy quyền
  • Mẫu giấy vay tiền
  • Mẫu giấy xác nhận
  • Mẫu giấy đề nghị thanh toán
  • Mẫu giấy đi đường
  • Mẫu hợp đồng
  • Pháp luật
  • Phong thủy – Tử vi
  • Tin tức
  • Wikipedia (DE)
  • Wikipedia (Eng)
  • Wikipedia (FL)
  • Wikipedia (Thai)
  • Wikipedia (VI)
  • Điều luật mới

Bài viết mới

  • Jetzt ansehen 9+ asr a 1.3 sicherheits und gesundheitsschutzkennzeichnung Standard
  • Jetzt ansehen 9+ aluminiumblech 1 5 mm Standard
  • Jetzt ansehen 9+ 1.8974 Standard
  • Jetzt ansehen 8+ 1.8159 Standard
  • Jetzt ansehen 9+ 1 zu 1 wimpern Standard

Tham khảo thêm :

Pallet nhựa Duy Thái , mái che Sitemap-mexico

©2022 Công lý & Pháp Luật | Design: Newspaperly WordPress Theme